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Some background and motivation… 

?

conjec
ture

”Spurious” QPTs may appear across topological multicritical points. 
No change of symmetry or topology!

Common feature of quantum phase transitions [QPTs]  
(from a gapped ground state): 

nonanalytic ground-state energy 
& 

closing of the energy gap between the  
ground state and the first excited state
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”spin-orbit generalized” Aubry-André-Harper model when 
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possible experimental realization: curved quantum wire   
P. Gentile et al., Phys. Rev. Lett. 115, 256801 (2015) 
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another possible realization: periodically gated quantum wire   
G. I. Japaridze, H. J. & M. Malard, PRB 89, 201403(R) (2014)  
with an added periodic chemical potential 
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Rashba modulation
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whose diagonal [o↵-diagonal] entries are given by spin-conserving [spin-flipping] hopping amplitudes. Setting, for

simplicity, t = �
0
R = 1, one finds that ↵
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�e↵ =

p
�
2
R + �

2
D and ✓ = arctan(�D/�R). The model is thus fully parametrized by �e↵, ✓, and �.
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amplitude for spin-flipping 
hopping between site n and n+1
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where dk ⌘ d/dk. The minus sign in Eq. (S16) is introduced to make W > 0 since det[Q(k)] winds clockwise, i.e.

d' < 0.
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Topological phase diagram 

Do the two W=0 (W=2) regions in fact represent distinct topological phases, 
identifiable by going beyond the Altland-Zirnbauer ”ten-fold” way?

A ”hidden” symmetry group with distinct 1D irreps in the two W=0 (W=2) regions?   
Not likely. Conventionally comes with a level crossing and a 1st order QPT.

Spontaneous symmetry breaking in  
one of the two W=0 (W=2) regions?  
No. The ground state of a band insulator 
(with periodic boundary conditions) is unique.
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L. Fu, PRL 106, 106802 (2011) 

1D: inversion, translation, mirror symmetry 
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Beyond the ”tenfold way”? 

The spin-orbit coupled electron model         (class CII) does have mirror symmetry… 
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Beyond the ”tenfold way”? 
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The mirror symmetry, together with time-
reversal and chiral symmetry, enforces pairs 
of nodal points in the band structure, 
without the presence of a nonsymmorphic 
symmetry!                                      
M. Malard, P. de Brito, S. Östlund, and H. J.,

PRB 98, 165127 (2018)  
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The mirror symmetry, together with time-
reversal and chiral symmetry, enforces pairs 
of nodal points in the band structure, 
without the presence of a nonsymmorphic 
symmetry!                                      
M. Malard, P. E. de Brito, S. Östlund, and H. J.,

PRB 98, 165127 (2018)  
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A many-body ground state in the proximity to a topological QPT may 
occasionally develop a nonanalyticity with a simultaneous closing of 
the gap to the first excited level, without undergoing a QPT.

Alternatively… (conjecture): 
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Renormalization Group picture  
Intersection of RG critical surfaces at the multicritical point  
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Renormalization Group picture  
Intersection of RG critical surfaces at the multicritical point  



A many-body ground state in the proximity to a topological QPT may 
occasionally develop a nonanalyticity with a simultaneous closing of 
the gap to the first excited level, without undergoing a QPT.

Alternatively… (conjecture): 
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Intersection of RG critical surfaces at the multicritical point  
No numerical support for the expected strong crossover behavior
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A many-body ground state in the proximity to a topological QPT may 
occasionally develop a nonanalyticity with a simultaneous closing of 
the gap to the first excited level, without undergoing a QPT.

Alternatively… (conjecture): 

Renormalization Group picture  
RG critical surfaces intersecting at the multicritical point:  
interplay between RG fixed points causing the anomalous behavior?

for topological QPTs?
… in the making!
E. P. L. van Nieuwenburg et al., PRB 97, 155151 (2018)

W. Chen and A. P. Schnyder, New. J. Phys. 21, 073003 (2019)

M. A. Continentino et al., arXiv:1903.00758

… application to topological multicriticality 
M. Malard, P. E. de Brito, H. J, and W. Chen, in progress



Summary 
A 1D band insulator in symmetry class CII – with electrons subject to a 
spatially modulated spin-orbit coupling – has been found to support 
multicritical lines at which the gap closes and the ground state energy 
becomes nonanalytical, but with no apparent phase transition occurring. 

How to properly understand this anomaly remains an open problem…

M. Malard, D. Brandao, P. E. de Brito, H. J., soon to appear on the arXiv 
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