Topological multicriticality of spin-orbit coupled electrons in one dimension

Henrik Johannesson

in collaboration with Mariana Malard, David Brandao, Paulo de Brito

STINT
UNIVERSITY OF GOTHENBURG

Some background and motivation...

Our current understanding of Quantum Phase Transitions:
change of symmetry or topology of a ground state

Some background and motivation...

continuous finite order
 Our current understanding of Quantum Phase Transitions:
 change of symmetry or topology of a ground state

broken symmetry no broken symmetry
"Landau-Ginzburg-Wilson"
S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge, 2011)

Some background and motivation...

continuous finite order
 Our current understanding of Quantum Phase Transitions: change of symmetry or topology of a ground state

```
broken symmetry no broken symmetry
```

"Landau-Ginzburg-Wilson"
broken symmetry another broken symmetry
"deconfined quantum criticality"
T. Senthil et al., Science 303,1490 (2004)

Some background and motivation...

continuous finite order
 Our current understanding of Quantum Phase Transitions: change of symmetry or topology of a ground state

broken symmetry no broken symmetry

"Landau-Ginzburg-Wilson"

"deconfined quantum criticality"
long-range entanglement no long-range entanglement

> "QPTs into topologically ordered phases"
X.-G. Wen, Rev. Mod. Phys. 81, 41004 (2017)

Some background and motivation...

continuous finite order
 Our current understanding of Quantum Phase Transitions: change of symmetry or topology of a ground state

broken symmetry no broken symmetry

"Landau-Ginzburg-Wilson"

long-range entanglement
broken symmetry
another broken symmetry
"deconfined quantum criticality"
"QPTs into topologically ordered phases"
some topological invariant another topological invariant
"QPTs between different symmetry-protected topological phases"
C.-K. Chiu et al., Rev. Mod. Phys. 88, 035005 (2017)

Some background and motivation...

Common feature of quantum phase transitions [QPTs] (from a gapped ground state):
nonanalytic ground-state energy
\&
closing of the energy gap between the ground state and the first excited state

Some background and motivation...

Common feature of quantum phase transitions [QPTs] (from a gapped ground state):
nonanalytic ground-state energy
\&
closing of the energy gap between the ground state and the first excited state

Some background and motivation...

common feature of quantum phase transitions [QPTs] (from a gapped ground state):
conjecture

nonanalytic ground-state energy \&

closing of the energy gap between the ground state and the first excited state
"Spurious" QPTs may appear across topological multicritical points. No change of symmetry or topology!

Case study

1D electrons with modulated spin-orbit coupling

$$
H=\sum_{n=1}^{N} \sum_{\substack{\alpha, \alpha^{\prime} \\=\uparrow, \downarrow}} h_{\alpha \alpha^{\prime}}(n) c_{n, \alpha}^{\dagger} c_{n+1, \alpha^{\prime}}+\text { H.c. }=-t \delta_{\alpha \alpha^{\prime}}-i \gamma_{\mathrm{D}} \sigma_{\alpha \alpha^{\prime}}^{x}-i \gamma_{\mathrm{R}}(n) \sigma_{\alpha \alpha^{\prime}}^{y}
$$

Case study

1D electrons with modulated spin-orbit coupling

\[

\]

Case study

1D electrons with modulated spin-orbit coupling

$$
\begin{aligned}
& H=\sum_{n=1}^{N} \sum_{\substack{\alpha, \alpha^{\prime} \\
=\uparrow, \downarrow}} h_{\alpha \alpha^{\prime}}(n) c_{n, \alpha}^{\dagger} c_{n+1, \alpha^{\prime}}+\text { H.c. } \\
&=-t \delta_{\alpha \alpha^{\prime}}-i \gamma_{\mathrm{D}} \sigma_{\alpha \alpha^{\prime}}^{x}-i \gamma_{\mathrm{R}}(n) \sigma_{\alpha \alpha^{\prime}}^{y} \\
& \begin{array}{r}
\\
=\gamma_{\mathrm{R}}+\gamma_{\mathrm{R}}^{\prime} \cos (2 \pi q n+\phi)
\end{array}
\end{aligned}
$$

"spin-orbit generalized" Aubry-André-Harper mode/ when $q \notin \mathbb{Q}$ P. G. Harper, Proc. Phys. Soc. London A68, 874 (1955) S. Aubry and G. André, Ann. Isr. Phys. Soc. 3, 133 (1980)
possible experimental realization: curved quantum wire P. Gentile et al., Phys. Rev. Lett. 115, 256801 (2015)

Case study

1D electrons with modulated spin-orbit coupling

$$
H=\sum_{n=1}^{N} \sum_{\substack{\alpha, \alpha^{\prime} \\=\uparrow, \downarrow}}\left(h_{\alpha \alpha^{\prime}}(n) c_{n, \alpha}^{\dagger} c_{n+1, \alpha^{\prime}}+\mu(n) c_{n, \alpha}^{\dagger} c_{n, \alpha}\right)+\text { H.c. }=-t \delta_{\alpha \alpha^{\prime}}-i \gamma_{\mathrm{D}} \sigma_{\alpha \alpha^{\prime}}^{x}-i \gamma_{\mathrm{R}}(n) \sigma_{\alpha \alpha^{\prime}}^{y}
$$

another possible realization: periodically gated quantum wire with an added periodic chemical potential
G. I. Japaridze, H. J. \& M. Malard, PRB 89, 201403(R) (2014)

1D electrons with modulated spin-orbit coupling

$$
\begin{aligned}
H=\sum_{n=1}^{N} \sum_{\substack{\alpha, \alpha^{\prime} \\
=\uparrow, \downarrow}}\left(h_{\alpha \alpha^{\prime}}(n) c_{n, \alpha}^{\dagger} c_{n+1, \alpha^{\prime}}\right. & \left.+\mu(n) c_{n, \alpha}^{\dagger} c_{n, \alpha}\right)+ \text { H.c. } \\
& +\sum_{\substack{n, n^{\prime} \\
\alpha, \alpha^{\prime}}} V\left(n-n^{\prime}\right) c_{n, \alpha}^{\dagger} c_{n^{\prime}, \alpha^{\prime}}^{\dagger} c_{n^{\prime}, \alpha^{\prime}} c_{n, \alpha}
\end{aligned}
$$

1D electrons with modulated spin-orbit coupling

$$
\begin{aligned}
H=\sum_{n=1}^{N} \sum_{\substack{\alpha, \alpha^{\prime} \\
=\uparrow, \downarrow}}\left(h_{\alpha \alpha^{\prime}}(n) c_{n, \alpha}^{\dagger} c_{n+1, \alpha^{\prime}}\right. & \left.+\mu(n) c_{n, \alpha}^{\dagger} c_{n, \alpha}\right)+ \text { H.c. } \\
& +\sum_{\substack{n, n^{\prime} \\
\alpha, \alpha^{\prime}}} V\left(n-n^{\prime}\right) c_{n, \alpha}^{\dagger} c_{n^{\prime}, \alpha^{\prime}}^{\dagger} c_{n^{\prime}, \alpha^{\prime}} c_{n, \alpha} \\
& +\sum_{n}\left(\Delta c_{n, \uparrow} c_{n, \downarrow}+\right.\text { H.c. interaction }
\end{aligned}
$$

1D electrons with modulated spin-orbit coupling

$$
H=\sum_{n=1}^{N} \sum_{\substack{\alpha, \alpha^{\prime} \\=\uparrow, \downarrow}}\left(h_{\alpha \alpha^{\prime}}(n) c_{n, \alpha}^{\dagger} c_{n+1, \alpha^{\prime}}+\mu(n) c_{n, \alpha}^{\dagger} c_{n, \alpha}\right)+\text { H.c. }
$$

e-e interaction

$$
\begin{aligned}
& +\sum_{\substack{n, n^{\prime} \\
\alpha, \alpha^{\prime}}} V\left(n-n^{\prime}\right) c_{n, \alpha}^{\dagger} c_{n^{\prime}, \alpha^{\prime}}^{\dagger} c_{n^{\prime}, \alpha^{\prime}} c_{n, \alpha} \\
& +\sum_{n}\left(\Delta c_{n, \uparrow} c_{n, \downarrow}+\text { H.c. }\right)
\end{aligned}
$$

bosonization \& RG
M. Malard, G. I. Japaridze \& H. J., PRB 94, 115128 (2016)

Back to the simple noninteracting model...

1D electrons with modulated spin-orbit coupling

$$
\begin{aligned}
H=\sum_{n=1}^{N} \sum_{\substack{\alpha, \alpha^{\prime} \\
=\uparrow, \downarrow}} h_{\alpha \alpha^{\prime}}(n) c_{n, \alpha}^{\dagger} c_{n+1, \alpha^{\prime}}+\text { H.c. } \\
=-t \delta_{\alpha \alpha^{\prime}}-i \gamma_{\mathrm{D}} \sigma_{\alpha \alpha^{\prime}}^{x}-i \gamma_{\mathrm{R}}(n) \sigma_{\alpha \alpha^{\prime}}^{y} \\
\underbrace{}_{=\gamma_{\mathrm{R}}+\gamma_{\mathrm{R}}^{\prime} \cos (2 \pi q n+\phi)}
\end{aligned}
$$

Back to the simple noninteracting model...

1D electrons with modulated spin-orbit coupling

$$
\begin{aligned}
H=\sum_{n=1}^{N} \sum_{\substack{\alpha, \alpha^{\prime} \\
=\uparrow, \downarrow}} h_{\alpha \alpha^{\prime}}(n) c_{n, \alpha}^{\dagger} c_{n+1, \alpha^{\prime}}+\text { H.c. } \\
=-t \delta_{\alpha \alpha^{\prime}}-i \gamma_{\mathrm{D}} \sigma_{\alpha \alpha^{\prime}}^{x}-i \gamma_{\mathrm{R}}(n) \sigma_{\alpha \alpha^{\prime}}^{y} \\
\mathrm{~N}_{=\gamma_{\mathrm{R}}}+\gamma_{\mathrm{R}}^{\prime} \cos (2 \pi q n+\phi)
\end{aligned}
$$

$$
\text { choose } t=\gamma_{\mathrm{R}}^{\prime}=1
$$

Back to the simple noninteracting model...

1D electrons with modulated spin-orbit coupling

$$
\begin{aligned}
H=\sum_{n=1}^{N} \sum_{\substack{\alpha, \alpha^{\prime} \\
=\uparrow, \downarrow}} h_{\alpha \alpha^{\prime}}(n) c_{n, \alpha}^{\dagger} c_{n+1, \alpha^{\prime}}+\text { H.c. } \\
=-t \delta_{\alpha \alpha^{\prime}}-i \gamma_{\mathrm{D}} \sigma_{\alpha \alpha^{\prime}}^{x}-i \gamma_{\mathrm{R}}(n) \sigma_{\alpha \alpha^{\prime}}^{y} \\
\mathrm{~N}_{=\gamma_{\mathrm{R}}}+\gamma_{\mathrm{R}}^{\prime} \cos (2 \pi q n+\phi)
\end{aligned}
$$

choose $t=\gamma_{\mathrm{R}}^{\prime}=1$
free parameters: $\gamma_{\mathrm{eff}}=\sqrt{{\gamma_{\mathrm{D}}}^{2}+\gamma_{\mathrm{R}}{ }^{2}}, \theta=\arctan \left(\gamma_{\mathrm{D}} / \gamma_{\mathrm{R}}\right), \phi$

Back to the simple noninteracting model...

1D electrons with modulated spin-orbit coupling

$$
\begin{aligned}
H=\sum_{n=1}^{N} \sum_{\substack{\alpha, \alpha^{\prime} \\
=\uparrow, \downarrow}} h_{\alpha \alpha^{\prime}}(n) c_{n, \alpha}^{\dagger} c_{n+1, \alpha^{\prime}}+\text { H.c. } \\
=-t \delta_{\alpha \alpha^{\prime}}-i \gamma_{\mathrm{D}} \sigma_{\alpha \alpha^{\prime}}^{x}-i \gamma_{\mathrm{R}}(n) \sigma_{\alpha \alpha^{\prime}}^{y} \\
\underbrace{}_{=\gamma_{\mathrm{R}}+\gamma_{\mathrm{R}}^{\prime} \cos (2 \pi q n+\phi)}
\end{aligned}
$$

choose $t=\gamma_{\mathrm{R}}^{\prime}=1$
free parameters: $\gamma_{\mathrm{eff}}=\sqrt{{\gamma_{\mathrm{D}}}^{2}+{\gamma_{\mathrm{R}}}^{2}}, \theta=\arctan \left(\gamma_{\mathrm{D}} / \gamma_{\mathrm{R}}\right), \phi$

1D electrons with modulated spin-orbit coupling

$q=1 / 4$
Introduce an 8 -component spinor in k-space (from Fourier transforming with respect to the unit cell position coordinates) with spin projections \pm along the direction of the combined Rashba and Dresselhaus fields:
$c_{k}=\left(c_{k, 1}^{+}, c_{k, 1}^{-}, c_{k, 3}^{+}, c_{k, 3}^{-}, c_{k, 2}^{+}, c_{k, 2}^{-}, c_{k, 4}^{+}, c_{k, 4}^{-}\right)^{T}$

1D electrons with modulated spin-orbit coupling

Introduce an 8-component spinor in k-space (from Fourier transforming with respect to the unit cell position coordinates) with spin projections talong the direction of the combined Rashba and Dresselhaus fields:
$c_{k}=\left(c_{k, 1}^{+}, c_{k, 1}^{-}, c_{k, 3}^{+}, c_{k, 3}^{-}, c_{k, 2}^{+}, c_{k, 2}^{-}, c_{k, 4}^{+}, c_{k, 4}^{-}\right)^{T}$
$H=\sum_{k} c_{k}^{\dagger} \underset{\uparrow}{\mathcal{H}}(k) c_{k}$
amplitude for spin-flipping
hopping between site n and $n+1$
amplitude for spin-conserving
hopping between site n and $n+1$

$$
\stackrel{\uparrow}{=}\left[\begin{array}{rr}
A_{1} & e^{-i k} A_{4}^{*} \\
A_{2}^{*} & A_{3}
\end{array}\right] \quad A_{n}=\left[\begin{array}{cc}
\alpha_{n}^{+} & \beta_{n} \\
\beta_{n} & \alpha_{n}^{-}
\end{array}\right] \quad n=1, \ldots, 4
$$

Symmetry class \& topological invariant

chiral symmetry OK
$\mathcal{S} \mathcal{H}(k) \mathcal{S}^{-1}=-\mathcal{H}(k) \quad \mathcal{S}=\sigma_{z} \otimes \mathbb{1}_{4 \times 4}$
time-reversal symmetry OK
$\mathcal{T} \mathcal{H}(k) \mathcal{T}^{-1}=\mathcal{H}^{*}(-k) \quad \mathcal{T}=\mathbb{1}_{4 \times 4} \otimes\left(-i \sigma_{y}\right), \mathcal{T}^{2}=-1$
particle-hole symmetry OK
$\mathcal{C} \mathcal{H}(k) \mathcal{C}^{-1}=-\mathcal{H}^{*}(-k) \quad \mathcal{C}=-\mathcal{T} \mathcal{S}, \mathcal{C}^{2}=-1$

Symmetry class \& topological invariant

chiral symmetry OK
$\mathcal{S} \mathcal{H}(k) \mathcal{S}^{-1}=-\mathcal{H}(k) \quad \mathcal{S}=\sigma_{z} \otimes \mathbb{1}_{4 \times 4}$
time-reversal symmetry OK
$\mathcal{T} \mathcal{H}(k) \mathcal{T}^{-1}=\mathcal{H}^{*}(-k) \quad \mathcal{T}=\mathbb{1}_{4 \times 4} \otimes\left(-i \sigma_{y}\right), \mathcal{T}^{2}=-1$
particle-hole symmetry OK

$$
\mathcal{C} \mathcal{H}(k) \mathcal{C}^{-1}=-\mathcal{H}^{*}(-k) \quad \mathcal{C}=-\mathcal{T S}, \mathcal{C}^{2}=-1
$$

enforcing all three symmetries
symmetry class CII
A. P. Schnyder et al., PRB 87, 195125 (2008)
topological invariant:
winding number $W \in 2 \mathbb{Z}$

Topological phase diagram from computing W

$$
W=-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{d \varphi}{d k} d k, \quad \operatorname{det}[Q(k)]=R(k) e^{i \varphi(k)}
$$

J. K. Asbóth et al., Lecture Notes in Physics, 919 (2016)

Topological phase diagram

$$
W=-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{d \varphi}{d k} d k, \quad \operatorname{det}[Q(k)]=R(k) e^{i \varphi(k)}
$$

$$
W=0
$$

topologically trivial phase
(3) $W=2$
topologically nontrivial phase:
2 robust boundary states / edge

Topological phase diagram

$$
W=-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{d \varphi}{d k} d k, \operatorname{det}[Q(k)]=R(k) e^{i \varphi(k)}
$$

$$
\bigcirc W=0 \quad \oiiint W=2
$$

closed curve around gap-closing point ($\bar{\gamma}_{\mathrm{eff}}, \bar{\theta}, \bar{\phi}, k_{ \pm}$) in parameter-momentum space
L. Li and S. Chen, PRB 92, 085118 (2015)

Topological phase diagram

$$
W=-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{d \varphi}{d k} d k, \quad \operatorname{det}[Q(k)]=R(k) e^{i \varphi(k)}
$$

$$
\bigcirc W=0 \quad \oiiint W=2
$$

topologically nontrivial phase:
2 robust boundary states / edge

$$
0.5 \quad \bar{w}_{ \pm}=-1 \quad \bigcirc \bar{w}_{ \pm}=0 \quad \bar{w}_{ \pm}=1
$$

$\theta(\pi)$

$$
\bar{W}_{ \pm}=-\frac{1}{2 \pi} \int_{C_{ \pm}} \frac{d \varphi}{d k} d k
$$

closed curve around gap-closing point ($\bar{\gamma}_{\mathrm{eff}}, \bar{\theta}, \bar{\phi}, k_{ \pm}$) in parameter-momentum space
L. Li and S. Chen, PRB 92, 085118 (2015)

Topological phase diagram

Topological phase diagram

Topological phase diagram

S. N. Kempkes et al., s. N. Kempkes et al., (2016)
Sci. Rep. 6,

$$
\bigcirc W=0 \quad \not \quad W=2
$$

topologically topologically trivial phase nontrivial phase:

2 robust boundary states / edge

Topological phase diagram

2nd order QPTs sci. Rep. 6, 88530 (2016)

Topological phase diagram

4th order nonanalyticity

Topological phase diagram

Spontaneous symmetry breaking in one of the two $W=0(W=2)$ regions? No. The ground state of a band insulator (with periodic boundary conditions) is unique.

Topological phase diagram

Spontaneous symmetry breaking in one of the two $W=0(W=2)$ regions?
No. The ground state of a band insulator (with periodic boundary conditions) is unique.

A "hidden" symmetry group with distinct 1D irreps in the two $W=0(W=2)$ regions? Not likely. Conventionally comes with a level crossing and a 1st order QPT.

Topological phase diagram

Spontaneous symmetry breaking in one of the two $W=0(W=2)$ regions?
No. The ground state of a band insulator (with periodic boundary conditions) is unique.

A "hidden" symmetry group with distinct 1D irreps in the two $W=0(W=2)$ regions? Not likely. Conventionally comes with a level crossing and a 1st order QPT.

Do the two $W=0(W=2)$ regions in fact represent distinct topological phases, identifiable by going beyond the Altand-Zirnbauer "ten-fold" way?

Beyond the "tenfold way"...

case in point

adding space group symmetries to the symmetries of the tenfold way: topological crystalline insulators
L. Fu, PRL 106, 106802 (2011)

1D: inversion, translation, mirror symmetry

Beyond the "tenfold way"...

case in point

adding space group symmetries to the symmetries of the tenfold way: topological crystalline insulators
L. Fu, PRL 106, 106802 (2011)

1D: inversion, translation, mirror symmetry

+ time-reversal symmetry
trivial 1D All phase splits into trivial $(\nu=0)$ and topologically nontrivial ($\nu=1$) phases
A. Lau et al., PRB 94, 165164 (2016)

Beyond the "tenfold way"?

case in point

adding space group symmetries to the symmetries of the tenfold way: topological crystalline insulators
L. Fu, PRL 106, 106802 (2011)

The spin-orbit coupled electron model $\mathcal{H}(k)$ (class C/I) does have mirror symmetry... $\mathcal{M} \mathcal{H}(k) \mathcal{M}^{-1}=\mathcal{H}(-k), \quad \mathcal{M}=I_{4 x 4} \otimes i \sigma_{x}, \quad \mathcal{M}^{2}=-1$

Beyond the "tenfold way"?

case in point

adding space group symmetries to the symmetries of the tenfold way: topological crystalline insulators
L. Fu, PRL 106, 106802 (2011)

The spin-orbit coupled electron model $\mathcal{H}(k)$ (class C/I) does have mirror symmetry... $\mathcal{M} \mathcal{H}(k) \mathcal{M}^{-1}=\mathcal{H}(-k), \quad \mathcal{M}=I_{4 x 4} \otimes i \sigma_{x}, \quad \mathcal{M}^{2}=-1$ inversion spin flip
... but only when $\phi=\pi / 4$, that is, on one of the critical surfaces!

Beyond the "tenfold way"?

case in point
adding space group symmetries to the symmetries of the tenfold way: topological crystalline insulators
L. Fu, PRL 106, 106802 (2011)

The spin-orbit coupled electron model $\mathcal{H}(k)$ (class C/I) does have mirror symmetry... $\mathcal{M} \mathcal{H}(k) \mathcal{M}^{-1}=\mathcal{H}(-k), \quad \mathcal{M}=I_{4 x 4} \otimes i \sigma_{x}, \quad \mathcal{M}^{2}=-1$
... but only when $\phi=\pi / 4$, that is, on one of the critical surfaces!
The mirror symmetry, together with timereversal and chiral symmetry, enforces pairs of nodal points in the band structure, without the presence of a nonsymmorphic symmetry!
M. Malard, P. de Brito, S. Östlund, and H. J., PRB 98, 165127 (2018)

Beyond the "tenfold way"?

case in point
adding space group symmetries to the symmetries of the tenfold way: topological crystalline insulators
L. Fu, PRL 106, 106802 (2011)

The spin-orbit coupled electron model $\mathcal{H}(k)$ (class C/I) does have mirror symmetry... $\mathcal{M H}(k) \mathcal{M}^{-1}=\mathcal{H}(-k), \quad \mathcal{M}=I_{4 x 4} \otimes i \sigma_{x}, \quad \mathcal{M}^{2}=-1$ inversion spin flip
... but only when $\phi=\pi / 4$, that is, on one of the critical surfaces!

Beyond the "tenfold way"?

Could one add some other "weird" symmetry, allowing us to distinguish the two $W=0(W=2)$ regions?

Beyond the "tenfold way"?

Could one add some other "weird" symmetry, allowing us to distinguish the two $W=0(W=2)$ regions?

Where to look for it?

Alternatively... (conjecture):

A many-body ground state in the proximity to a topological QPT may occasionally develop a nonanalyticity with a simultaneous closing of the gap to the first excited level, without undergoing a QPT.

Alternatively... (conjecture):

A many-body ground state in the proximity to a topological QPT may occasionally develop a nonanalyticity with a simultaneous closing of the gap to the first excited level, without undergoing a QPT.

Renormalization Group picture Intersection of RG critical surfaces at the multicritical point

Alternatively... (conjecture):

A many-body ground state in the proximity to a topological QPT may occasionally develop a nonanalyticity with a simultaneous closing of the gap to the first excited level, without undergoing a QPT.

Renormalization Group picture Intersection of RG critical surfaces at the multicritical point

Alternatively... (conjecture):

A many-body ground state in the proximity to a topological QPT may occasionally develop a nonanalyticity with a simultaneous closing of the gap to the first excited level, without undergoing a QPT.

Renormalization Group picture Intersection of RG critical surfaces at the multicritical point No numerical support for the expected strong crossover behavior

Alternatively... (conjecture):

A many-body ground state in the proximity to a topological QPT may occasionally develop a nonanalyticity with a simultaneous closing of the gap to the first excited level, without undergoing a QPT.

Renormalization Group picture for topological QPTs?
... in the making!
E. P. L. van Nieuwenburg et al., PRB 97, 155151 (2018)
W. Chen and A. P. Schnyder, New. J. Phys. 21, 073003 (2019)
M. A. Continentino et al., arXiv:1903.00758
... application to topological multicriticality
M. Malard, P. E. de Brito, H. J, and W. Chen, in progress

Summary

A 1D band insulator in symmetry class CII - with electrons subject to a spatially modulated spin-orbit coupling - has been found to support multicritical lines at which the gap closes and the ground state energy becomes nonanalytical, but with no apparent phase transition occurring.

How to properly understand this anomaly remains an open problem...
M. Malard, D. Brandao, P. E. de Brito, H. J., soon to appear on the arXiv
related work
G. I. Japaridze, H. J., M. Malard, PRB 89, 201403(R) (2014)
M. Malard, G. I. Japaridze \& H. J., PRB 94, 115128 (2016)
M. Malard, P. E. de Brito, S. Östlund, and H. J., PRB 98, 165127 (2018)

